For the past couple of months, HELB’s engineers have assiduously worked on design, production and testing of the cabinets for the GrlnhY2.0 project which has recently been launched at the Salzgitter Flachstahl GmbH steelworks.

Together with partners Sunfire GmbH, Paul Wurth S.A., Tenova SpA, French research center CEA and Salzgitter Mannesmann Forschung GmbH, the world’s most powerful High-Temperature Electrolyzer (HTE) is being constructed for the energy-efficient production of hydrogen. The GrInHy2.0 project (Green Industrial Hydrogen via steam electrolysis) has an overall budget of € 5.5 million.

HELB’s scope of work included designing the control cabinet with PLC (programmable logic controller) and distribution cabinet. The next step was the production of cabinets, testing, Factory Acceptance Test, and then shipment to Paul Wurth Company, where they will do the installation and commissioning. Eight of HELB’s experts were involved in this project. An interesting fact is that, due to the CoViD-19 pandemic, HELB’s engineers together with Paul Wurth did the first-ever remote FAT with the help of modern technology.

GrInHy2.0 marks the first implementation of a high-temperature electrolyzer with a nominal power input of 720 kilowatts in an industrial environment. By the end of 2022, it is expected to have been in operation for at least 13,000 hours, producing a total of around 100 tonnes of high-purity (99.98 %) hydrogen. This will be used for annealing processes in the integrated steelworks as a replacement for hydrogen produced from natural gas.

The European Commission and its roadmap for moving towards a competitive low-carbon economy in 2050 sets greenhouse gas emissions targets for different economic sectors. One of the main challenges of transforming Europe´s economy will be the integration of highly volatile renewable energy sources (RES). Especially hydrogen produced from RES will have a major part in decarbonizing the industry, transport, and energy sector – as feedstock, fuel and/or energy storage. Due to significant energy input in form of steam preferably from industrial waste heat, Steam Electrolysis (StE) based on Solid Oxide Electrolysis Cells (SOEC) achieves outstanding electrical efficiencies of up to 84 %el, LHV. Thus, StE is a very promising technology to produce hydrogen most energy efficient.

July 21, 2020

Latest news

A step further towards digital engineering

Signed contract on co-financing of a research and development project

HELB experts launched a research and development project in cooperation with the Faculty of Electrical Engineering and Computing – FER, HEP – ODS, and Sedam IT to develop a system for monitoring the energy flows of the secondary distribution network and thus provide in-depth insight into the state of the power grid. More


HRT entrusts HELB with the delicate task of the redundant UPS power supply Master reconstruction

As part of long-term cooperation with the Croatian Radio and Television, HELB has completed another successful and interesting project. It was the reconstruction of electrical installations of redundant UPS power supply of the Master in the House of HRT in Zagreb, which included replacements and reconstructions of technological electrical installations and distributors that supply the Master’s space and technological lighting in the Master. More